A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity
نویسندگان
چکیده
Stem cell identity depends on the integration of extrinsic and intrinsic signals, which directly influence the maintenance of their epigenetic state. Although Myc transcription factors play a major role in stem cell self-renewal and pluripotency, their integration with signalling pathways and epigenetic regulators remains poorly defined. We addressed this point by profiling the gene expression and epigenetic pattern in ESCs whose growth depends on conditional Myc activity. Here we show that Myc potentiates the Wnt/β-catenin signalling pathway, which cooperates with the transcriptional regulatory network in sustaining ESC self-renewal. Myc activation results in the transcriptional repression of Wnt antagonists through the direct recruitment of PRC2 on these targets. The consequent potentiation of the autocrine Wnt/β-catenin signalling induces the transcriptional activation of the endogenous Myc family members, which in turn activates a Myc-driven self-reinforcing circuit. Thus, our data unravel a Myc-dependent self-propagating epigenetic memory in the maintenance of ESC self-renewal capacity.
منابع مشابه
Multiple Roles of MYC in Integrating Regulatory Networks of Pluripotent Stem Cells
Pluripotent stem cells (PSCs) are defined by their self-renewal potential, which permits their unlimited propagation, and their pluripotency, being able to generate cell of the three embryonic lineages. These properties render PSCs a valuable tool for both basic and medical research. To induce and stabilize the pluripotent state, complex circuitries involving signaling pathways, transcription r...
متن کاملDistinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity.
Self-renewal and pluripotency of embryonic stem cells (ESCs) are established by multiple regulatory pathways operating at several levels. The roles of histone demethylases (HDMs) in these programs are incompletely defined. We conducted a functional RNAi screen for HDMs and identified five potential HDMs essential for mouse ESC identity. In-depth analyses demonstrate that the closely related HDM...
متن کاملMyc and Max Genome-Wide Binding Sites Analysis Links the Myc Regulatory Network with the Polycomb and the Core Pluripotency Networks in Mouse Embryonic Stem Cells
Myc is a master transcription factor that has been demonstrated to be required for embryonic stem cell (ESC) pluripotency, self-renewal, and inhibition of differentiation. Although recent works have identified several Myc-targets in ESCs, the list of Myc binding sites is largely incomplete due to the low sensitivity and specificity of the antibodies available. To systematically identify Myc bin...
متن کاملA Myc Network Accounts for Similarities between Embryonic Stem and Cancer Cell Transcription Programs
c-Myc (Myc) is an important transcriptional regulator in embryonic stem (ES) cells, somatic cell reprogramming, and cancer. Here, we identify a Myc-centered regulatory network in ES cells by combining protein-protein and protein-DNA interaction studies and show that Myc interacts with the NuA4 complex, a regulator of ES cell identity. In combination with regulatory network information, we defin...
متن کاملAn Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells
Much attention has focused on a small set of transcription factors that maintain human or mouse embryonic stem (ES) cells in a pluripotent state. To gain a more complete understanding of the regulatory network that maintains this state, we identified target promoters of nine transcription factors, including somatic cell reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) and others (Nanog, Dax1...
متن کامل